位置:成果数据库 > 期刊 > 期刊详情页
Investigation of charge loss characteristics of HfO2 annealed in N2 or 02 ambient
  • ISSN号:1674-4926
  • 期刊名称:《半导体学报:英文版》
  • 时间:0
  • 分类:TP273[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置] TN386.2[电子电信—物理电子学]
  • 作者机构:[1]Laboratory of Nano-Fabrication and Novel Devices Integrated Technology, Institute of Microelectronics, Chinese Academy ofSciences, Beijing 100029, China
  • 相关基金:Project supported by the MOST (Nos. 2010CB934200, 2011CBA00600) and the National Natural Science Foundation of China (No. 61176073).
中文摘要:

The retention characteristics of electrons and holes in hafnium oxide with post-deposition annealing in a N2 or O2 ambient were investigated by Kelvin probe force microscopy. The KFM results show that compared with the N2 PDA process, the O2 PDA process can lead to a significant retention improvement. Vertical charge leakage and lateral charge spreading both played an important role in the charge loss mechanisms. The retention improvement is attributed to the deeper trap energy. For electrons, the trap energy of the HOS structure annealed in a N2 or O2 ambient were determined to be about 0.44 and 0.49 eV, respectively. For holes, these are about 0.34and 0.36 eV, respectively. Finally, the electrical characteristics of the memory devices are demonstrated from the experiment, which agreed with our characterization results. The qualitative and quantitative determination of the charge retention properties, the possible charge decay mechanism and trap energy reported in this work can be very useful for the characterization of hafnium charge storage devices.

英文摘要:

The retention characteristics of electrons and holes in hafnium oxide with post-deposition annealing in a N2 or 02 ambient were investigated by Kelvin probe force microscopy. The KFM results show that compared with the N2 PDA process, the O2 PDA process can lead to a significant retention improvement. Vertical charge leakage and lateral charge spreading both played an important role in the charge loss mechanisms. The retention improvement is attributed to the deeper trap energy. For electrons, the trap energy of the HOS structure annealed in a N2 or 02 ambient were determined to be about 0.44 and 0.49 eV, respectively. For holes, these are about 0.34 and 0.36 eV, respectively. Finally, the electrical characteristics of the memory devices are demonstrated from the experiment, which agreed with our characterization results. The qualitative and quantitative determination of the charge retention properties, the possible charge decay mechanism and trap energy reported in this work can be very useful for the characterization of hafnium charge storage devices.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《半导体学报:英文版》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国电子学会 中国科学院半导体研究所
  • 主编:李树深
  • 地址:北京912信箱
  • 邮编:100083
  • 邮箱:cjs@semi.ac.cn
  • 电话:010-82304277
  • 国际标准刊号:ISSN:1674-4926
  • 国内统一刊号:ISSN:11-5781/TN
  • 邮发代号:2-184
  • 获奖情况:
  • 90年获中科院优秀期刊二等奖,92年获国家科委、中共中央宣传部和国家新闻出版署...,97年国家科委、中共中央中宣传部和国家新出版署三等奖,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),英国英国皇家化学学会文摘,中国北大核心期刊(2000版)
  • 被引量:7754