本文研究了行为混合阵列加权和的收敛性.利用混合序列的Rosenthal型最大值不等式,讨论了混合阵列加权和的L1收敛性,依概率收敛性,几乎处处收敛性,及完全收敛性之间的等价关系,推广了行独立随机变量阵列相应的结果.
In this article, we study the convergent behaviors of weighted sums for arrays of rowwise mixing random variables. By using Rosenthal-type inequality of partial sums for -mixing random variables, we study the equivalences among L1 convergence, convergence in probability, almost sure convergence and complete convergence of weighted sums for arrays of rowwise -mixing random variables. Our results extend the corresponding results of arrays of rowwise independent random variables.