提出了一种具有n^+浮空层的横向superjunction结构,此结构通过磷或砷离子注入在高阻衬底上形成n^+浮空层来消除传统横向superjunction结构中的衬底辅助耗尽效应.这种效应来源于P型的衬底辅助耗尽了superjunction区的n型层,使P与n之间的电荷不能平衡,n^+层的REBULF效应通过使漏端电场减小,体电场重新分布而使新结构中的衬底承担了更多的电压,结果表明这种结构具有高的击穿电压、低的导通电阻和漂移区中电荷平衡的特点。
A new super junction LDMOST structure that suppresses the substrate-assisted depletion effect is designed with an n^+-floating layer embedded in the high-resistance p-type substrate by implanting phosphor or arsenic. This effect results from a charge imbalance between the n-type and p-type pillars when the n-type pillars are depleted by p-type substrate. The high electric field around the drain is reduced by the n^+-floating layer due to the REBULF effect,which causes the redistribution of the bulk electric field in the drift region,and thus the substrate supports more biases. The new structure features high breakdown voltage, low on-resistance,and charge balance in the drift region.