通过四元缩聚的方法合成了带有氨基的磺化度可控的磺化聚芳醚酮砜共聚物(Am-SPAEKS). 采用红外光谱和核磁共振谱表征了Am-SPAEKS共聚物的结构. 该共聚物膜具有较好的热性能、尺寸稳定性、较高的质子传导率和阻醇能力. 在80℃时Am-SPAEKS-1膜的质子传导率达到0.0894 S/cm, 而其甲醇渗透系数在25℃时为0.24×10^-6 cm^2/s, 低于相同温度下SPAEKS膜(0.87×10^-6 cm^2/s)和Nafion膜(2×10^-6 cm^2/s). 结果表明, Am-SPAEKS膜能够满足质子交换膜燃料电池(PEMFC)的使用要求.
The sulfonated poly(aryle ether ketone sulfone) with different sulfonation degree containing amino copolymers were prepared by polycondensation method. The FTIR and 1H NMR spectra of amino membrane-sulfonated poly(aryle ether ketone sulfone)(Am-SPAEKS) show that the amino groups are introduced into SPAEKS copolymers. The measured results show that the thermal stability, dimensional stability, resistance methanol performance and proton conductivities of Am-SPAEKS membranes are improved due to the introduction of amino groups. The proton conductivity of Am-SPAEKS-1 membrane reaches 0.0894 S/cm at 80℃. The methanol permeability coefficient of Am-SPAEKS-1 membrane is only 0.24×10^-6 cm^2/s, which is lower than that of pure SPAEKS(0.87×10^-6 cm^2/s) membrane and Nafion(2×10^-6 cm^2/s) membrane. All the results indicate that the Am-SPAEKS membranes are promising as proton exchange membranes for middle-high temperature proton exchange membrane fuel cells applications and direct methanol fuel cells(DMFCs).