位置:成果数据库 > 期刊 > 期刊详情页
基于FPGA的快速图像纹理特征提取方法的研究
  • ISSN号:1000-7105
  • 期刊名称:《电子测量与仪器学报》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术] TH79[机械工程—仪器科学与技术;机械工程—精密仪器及机械]
  • 作者机构:[1]南京信息工程大学、江苏省气象探测与信息处理重点实验室,南京210044, [2]南京信息工程大学、江苏省大气环境与装备技术协同创新中心,南京210044, [3]南京信息工程大学电子与信息工程学院,南京210044
  • 相关基金:国家自然科学基金(11202106)、江苏省气象探测与信息处理重点实验室开放课题(KDXS1401)、江苏高校品牌专业建设工程、江苏省“信息与通信工程”优势学科建设项目资助
中文摘要:

图像特征的一个重要分支就是纹理特征,它体现了不同图像和物体的形态、大小、分布、方向等重要参数,对图像特征识别起到决定性因素。但是纹理特征提取的过程十分复杂且计算量巨大,为了解决这个难题,提出了一种在现场可编程逻辑门阵列(FPGA)平台下实现纹理特征提取新方法。首先对基本图像特征算法做了并行化的优化,从算法的数值范围和表示精度两个角度,做了相应的分析和误差控制,从而适应FPGA的运行。然后对FPGA的数据流传输提出了一个高效率的解决办法,该方法对其中的主要模块采用了流水线优化,并采用寄存器配置模式,从而在线地修改参数,适应不同的图像大小和卷积核等环境变量。结果表明,在同等功耗条件下,可以达到10倍于CPU的性能,达到了快速提取特征的目的。

英文摘要:

The image feature is an important branch of texture feature, which reflects the different images and object shape, size, distribution, direction, and other important parameters and plays a decisive factor on image characteristics recognition.But the texture feature extraction process is very complex and time cost.In order to solve the problem, a new method to extract texture feature based on FPGA is implemented.First, the texture feature extraction method is optimized with parallel algorithm, then the error is analyzed and controlled based on numerical range and representation accuracy, so the method can operate on FPGA efficiently.Also, a method to improve the data stream transmission on FPGA is designed, which employs pipeline optimization on main modules and register allocation model.The system on FPGA can modify parameters on-line to adapt for different environmental variables, such as image size, convolution kernel and so on.The results show that the proposed model extracts image texture feature up to ten times faster than CPU under the same power consumption, and it is an ideal system to fast extract image texture feature based on FPGA.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《电子测量与仪器学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国电子学会
  • 主编:彭喜元
  • 地址:北京市东城区北河沿大街79号2层
  • 邮编:100009
  • 邮箱:mi1985@emijournal.com
  • 电话:010-64044400
  • 国际标准刊号:ISSN:1000-7105
  • 国内统一刊号:ISSN:11-2488/TN
  • 邮发代号:80-403
  • 获奖情况:
  • 国内外数据库收录:
  • 中国中国科技核心期刊,中国北大核心期刊(2014版)
  • 被引量:14380