整循环图Xn(D)的顶点集是Zn={0,1,2,…,n-1},顶点a和b相邻当且仅当gcd(a-b,n)∈D,D是n的某个正的真因子集。本文研究了某些整循环图的平面性,独立数和边着色数,并且完全确定了整循环图匹配大小的最大值。
Integral circulant graph Xn(D) has the vertex set Zn={0,1,2,…,n-1},and vertices a and b are adjacent if and only if gcd(a-b,n)∈D,where D is a set of positive and proper divisors of n.The planarity,independence number and edge chromatic number of some integral circulant graph are studies,and the size of the maximum matching of integral circulant graphs is completely evaluated.