设R是环、I是R的任意小右理想,称M为右SP-内射模,如果I到M的任意同态都可以扩张为R到M的同态.本文研究了SP-内射模的性质,得到了SP-内射模的等价刻画:M是SP.内射模的充要条件是任意小右理想aR到M的同态α是一个左乘.M是SP-内射模的充要条件是对于任意a∈J,有IMr(a)=Ma,这里J是R的Jacobson根.证明了SP-内射模的任意直积、任意直和仍是SP-内射模:无零因子环上的SP-内射模的和、商模是SP一内射模.给出了SP-内射模是小内射模的一个必要条件.还运用SP-内射模刻画了一类半本原环.
This paper studies SP-injective modules. New characterizations of SP-injective modules and some results concerning the sums, the direct sums, the direct products, the summands, the factors of SP- injective modules are given. Also, a characterization of a class of semiprimitive tings is obtained using SP- injective modules.