本文研究了模n高斯整数环Z_n[i]的平方映射图Γ(n).利用数论、图论与群论等方法,获得了Γ(n)中顶点0及1的入度,并研究了Γ(n)的零因子子图的半正则性.同时,获得了Γ(n)中顶点的高度公式.推广了Somer等人给出的模n剩余类环平方映射图的相关结论.
In this paper,we investigate some properties of the square mapping graphs Γ(n)of Z_n[i],the ring of Gaussian integers modulo n.Using the method of number theory,graph theory and group theory,we obtain the in-degree of 0 and 1.Moreover,we give the complete characterizations in terms of n in which Γ_2(n) is semiregular,where Γ_2(n) is induced by all the zero-divisors of Zn[i].The formulas on the heights of vertices in Γ(n) are also obtained.This paper extends results concerning the square mapping graphs of Zngiven by Somer.