设G是一个有限群,在G上定义一类新的共轭类图ΓG :以G的所有共轭类构成的集合为顶点集,两个不同的共轭类之间用一条边相连当且仅当这两个共轭类的长度互素.通过定义的共轭类图得到了一些图性质且通过图性质刻画了一些群的结构,如ΓG 碖 K 3当且仅当G 碖 Z3或S 3.特别地,获得了二面体群共轭类图的一些性质.最后,应用共轭类图的性质得到了一些群的性质.
A new graph ΓG of conjugacy classes of a finite group G is defined :its verticesare the conjugacy classes of G and two distinct vertices join by an edge if their sizes are coprime .By the defini-tion of ΓG ,we obtain some graph theoretical properties of ΓG and characterize some structures of fi-nite groups by their conjugate graphs .For example ,ΓG ≌ K3 if and only if G≌ Z3 or S3 .In particu-lar ,we prove some properties of the conjugate graphs of dihedral groups .Finally ,we obtain some properties of finite groups by applying properties of the conjugate graphs of finite groups .