设G1,G2是群,映射φ:G1→G2叫做G1到G2的广义同态映射,如果a,b∈G1,等式(ab)φ=aφbφ和(ab)φ=bφaφ,至少有一个成立.称群G广义作用在集合Ω上,如果群G到变换群SΩ有一个广义同态映射.通过研究有限群在集合上的广义作用及广义自同构群,得到了若干结果,推广了一些相关的经典定理.
Given groups G1,G2.A mapping φ:G1→G2 is said to be a generalized homomor-phism from G1 to G2 if for any a,b in G,either(ab)α=aαbα or(ab)φ=bφaφ.A group G is said to be generalized acting on set Ω if there is a generalized homomorphism mapping from G to the trans-formation group SΩ.By studying the generalized acting of group on sets and generalized automorphism groups,we obtain some new results which generalize some related classical theorems.