以表面平整、粗糙的玻璃为衬底,在不同衬底温度下直流磁控溅射沉积a-Si薄膜,制备成glass/a-Si/Al样品,经退火处理制备了poly-Si薄膜。分别采用Raman光谱、XRD光谱等手段研究了衬底粗糙度以及衬底温度对铝诱导晶化(AIC)制备的poly-Si品质的影响。Raman光谱表明:所有样品在521cm。都有尖锐、对称的Raman峰出现,表明样品完全结晶;XRD结果表明:poly-Si在(111)晶向择优生长;XRD在(111)处的半高宽值(FWHM)表明:玻璃衬底的形貌和a-Si沉积的温度对poly-Si的品质产生影响。200℃可能是AIC制备poly-Si薄膜时沉积a-Si时的最适温度。
Polycrystalline silicon (poly-Si) thin-films were made on planar and textured glass substrates by aluminum-induced crystallization (AIC) of in situ amorphous silicon (a-Si) deposited by DC-magnetron. The poly-Si films were characterized by Raman spectroscopy, X-ray diffraction (XRD) and atomic force microscopy (AFM). A narrow and symmetrical Ranman peak at the wave number of about 521 cm^-1 was observed for all samples, indicating that the films were fully crystallized. XRD results show that the crystallites in the authors' AIC poly-Si films were preferably (111) oriented. The measurement of full width at half maximum (FWHW) of (1 11) XRD peaks showed that the quality of the films was affected by the a-Si deposition temperature and the surface morphology of the glass substrates. It is likely that an a-Si deposition temperature of 200℃ seems to be ideal for the preparation of poly-Si films by AIC.