原先存在的基因经过一些改良可能获得新的属性从而承担新的功能.在分子遗传的层次,这个过程通常伴随基因重复以及基因重复后旁系同源基因的功能分化.本研究探索了基因重复后荷尔蒙、受体间特异性相互作用的演化形成.尽管对这个问题已有相关研究报道,但针对更多个案的研究能帮助我们更好地理解此前已经提出的进化模型的普遍性,可能还有助于发现新的进化模式.基于生物信息学的手段,结合比较基因组学、系统发育学的方法,本研究揭示,ghrelin前体基因和motilin前体基因是由一个祖先基因重复而来,基因重复发生在羊膜动物与两栖动物刚刚分歧之后.与此形成鲜明对照,它们各自的特异性受体却呈现了很不一样的进化历史.GPR39最先分化出来,而后一个祖先基因经连续的基因重复分化为鱼类特异的进化支A,GHSR和MLNR,基因重复发生在射线鳍(ray—finnedfish)与四足动物分化之前.譬hrelin/GHSR信号系统的功能从鱼类到哺乳动物的进化过程中始终保守.motilin—MLNR之间的特异性相互作用是荷尔蒙基因重复后,MLN与GHRL基因分化之后,在羊膜动物世糸中配体与受体协同进化而形成的.该结果提示,在分子水平上,基于保守的分子元件,新的神经内分泌响应模式能够通过基因重复后的基因选配过程形成.基因重复既节俭又极具创造力,为生物多样性的演化提供了物质基础.