建立带有支承松动—碰摩耦合故障的具有三轴承支承的双跨弹性转子系统的动力学模型,利用求解非线性非自治系统周期解的延拓打靶法和Floquet理论,研究系统周期运动的稳定性及失稳规律。双跨松动转子系统以鞍结分岔形式失稳,双跨碰摩转子系统则以Hopf分岔形式失稳,松动故障对松动—碰摩耦合故障转子—轴承系统稳定性的影响起主要作用,系统以鞍结分岔的形式失稳;在不同转速下,耦合故障转子—轴承系统会出现鞍结分岔、Hopf分岔和倍周期分岔等多种分岔形式。研究结果为有效识别转子—轴承系统的基础松动故障提供一定的参考。
A non-linear dynamic model was established of a two-span elastic rotor-bearing system with coupling faults of pedestal looseness and rub-impact supported on three plain journal bearings.Using the continuation-shooting algorithm for periodic solution of nonlinear non-autonomous system,the stability of the system periodic motion was studied by the Floquet theory.The unstable form of the rotor system with pedestal looseness fault is saddle-node bifurcation,and that with rub-impact fault is Hopf bifurcation.The...