通过对转子动力学模型的分析,推导出了影响系数矩阵的数学公式,证明了影响系数矩阵的条件数可以动平衡的精度。通过ANSYS软件建立了转子-轴承系统的动平衡模型,分别用全矢动平衡方法和基于单通道的传统影响系数法进行转子动平衡。结果表明:全矢动平衡方法的条件数小于单通道的,从而证明全矢动平衡方法精度高。在BENTLY转子实验台进行了双圆盘不平衡实验,其实验结果也证实了该结论。
Through the analysis of rotor dynamics model, the mathematical formula of influence coefficient matrix was discussed, and the theory that condition number of influence.coefficient matrix can measure the accuracy of dy- namic balancing was proved. The finite element model of dynamic balance of rotor-bearing system was established by using ANSYS, on which full vector dynamic balancing method and traditional influence coefficient method based on the signal of single-channel were used for rotor dynamic balance. The result shows that the condition number of full vector dynamic balancing method is less than that of traditional influence coefficient method, which proves that full vector dynamic balance method has higher accuracy. The result is also validated by imbalance experimental measurements of double disc on BENTLY rotor experimental table.