设{X(t,ω):t∈R^N}是R^d值轨道连续的随机过程,存在常数0<α<1,M>0,β≥d使E|X(t)-X(s)|^β≤M|t-s|^αβ t,s∈R^N,(β>N/α或E sup h∈[0,T]^N |X(t+h)-X(t)|^β≤MT^αβ t∈R^N,0<T≤1得到了X关于Borel集的象集和图集以及水平集的Hausdorff维数的最佳上界;同时存在常数a,α,b>0使P(|X(t)-X(s)|≤|t-s|^α x)≤ax^d t,s∈R^N,x≥0得到了X关于Borel集的象集和图集的Hausdorff维数的最佳下界。
Let{X (t, ω):t∈R^N} be a stochastic process taking values in R^d and with its paths continuous, with the condition: let 0〈α〈1,M〉0, β≥d be constants such that E|X(t)-X(s)|^β≤M|t-s|^αβ, t, s∈R^N , (β 〉N/α) or E sup h∈[0,T]^N|X ( t + h ) - X ( t )^β ≤ MT^αβ , t∈ R^N , 0 〈 T ≤1 . We obtain the best upper bounds of Hausdorff dimension of the images set ,the graph sets and the level sets about X for the Borel sets. moreover, with the condition: let a, α, d 〉 0 be constants such that P(|X(t)- X(s)| ≤ |t- s|^α x) ≤ ax^d, t, s∈R^N,x≥ 0. We obtain the best under bounds of Hausdorff dimension of the images set, the graph sets about X for the Borel sets.