在这篇论文,有可变的核的 parameterized Marcinkiewicz 积分旁边定义。被调查。它被证明那如果 Ω ∈ L ∞(R n )× L r (S n−1 )( r 】 ( n−1 ) p′/n )是在第二可变y′的一个奇怪的函数,然后操作符μ<潜水艇>Ω ρ 从 L p (R n )到 L p (R 为 1 【 p ≤ 的 n )最大 {(n+1 )/2, 2 } 。如果 Ω 满足 L 1-Dini 条件,它也被证明那,那么μ < 潜水艇 >Ω ρ 具有类型(p, p ) 为 1 【 p ≤ 2,弱类型(1, 1 ) 并且从 H 1 跳了到 L 1 。
In this paper,the parameterized Marcinkiewicz integrals with variable kernels defined by μΩ^ρ(f)(x)=(∫0^∞│∫│1-y│≤t Ω(x,x-y)/│x-y│^n-p f(y)dy│^2dt/t1+2p)^1/2 are investigated.It is proved that if Ω∈ L∞(R^n) × L^r(S^n-1)(r〉(n-n1p'/n) is an odd function in the second variable y,then the operator μΩ^ρ is bounded from L^p(R^n) to L^p(R^n) for 1 〈 p ≤ max{(n+1)/2,2}.It is also proved that,if Ω satisfies the L^1-Dini condition,then μΩ^ρ is of type(p,p) for 1 〈 p ≤ 2,of the weak type(1,1) and bounded from H1 to L1.