利用Pell方程和二项Thue方程的性质证明了:方程x+…+x^m=y^n仅有正整数解(m,n,x,y)=(1,r,s^r,s),(r,1,s,s+…+s^r)和(s^r,r,1,s),其中r和s是任意正整数.
In this paper, using some properties of Pell equations and binomial Thue equations, we prove that the equation x+…+x^m=y^n has only the positive integer solutions ( m, n ,x , y) = ( 1, r, s^r,s ) , ( r,1,s,s+…+s^r) and (s^r, r,1 ,s) ,where r and s are arbitrary positive integers.