设(a,b,c)是一组本原Pythagorean数组.论文运用初等数论方法证明了:如果(x,y,z)是方程a^x+6^y=c^z的一组适合(x,y,z)≠(2,2,2)正整数解,则必有x≠y以及z〉2.
Let (a, b, c) be a primitive Pythagorean triplet. In this paper, using some elementary numbel theory methods, we prove that if (x, y, z) is a positive integer solution of the equation a^x +b^y =c^z with (x, y, z) ≠ (2, 2, 2), then we have x≠y and z〉2.