利用空间H0^1(Ω)的正交分解和极小值原理给出了具临界指数2^*的椭圆方程-△u=λ1u-|u|^2*-2u+g(x,u)+h(x)解的存在性定理,这里次临界项g(x,u)关于u是非线性的,λ1为算子-△在H0^1(Ω)中最小特征值. 特别当h≡0时,本文还获得了非零解的存在性结论.
In this paper, existence theorems of solution for a class of semilinear elliptic equations -△u=λ1u-|u|^2*-2u+g(x, u)+h(x), involving the critical Sobolev exponent 2^* and the first eigenvalue λ1, has been given by ways of the least action principle and the orthogonal resolution on the Sobolev space H0^1 (Ω), where g is the subcritical item to be given. Moreover, a non-zero solution has been obtained in the case of h≡0.