位置:成果数据库 > 期刊 > 期刊详情页
基于分形和FNN的水轮机组振动故障在线诊断
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP277[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]中南大学信息科学与工程学院,长沙410083
  • 相关基金:国家“973”重大资助项目(2002CB312200)
中文摘要:

水轮发电机组的故障诊断具有模糊性和耦合性,提出一种基于模糊神经网络FNN的水轮发电机组振动故障在线诊断方法。首先,对反映转子振动状态的轴心轨迹用分形维数提取其结构特征,实现图形量化,以便FNN在线识别;接着,以6种典型振动故障为研究对象,在总结了包括轴心轨迹在内4类共14种故障征兆的基础上,分析各故障征兆的模糊属性,给出它们的模糊处理;然后,建立一种六层的前向FNN映射征兆到故障间的模糊推理,并给出学习算法修正网络参数;FNN通过自学习可保证良好的在线诊断精度。实例分析结果验证了其可行性。

英文摘要:

Considering the fuzzy and coupling characteristics of fault diagnosis for hydroelectric generating sets, this paper proposed a vibration fault on-line diagnosis method based on fuzzy neural networks(FNN). At first, fractal dimension was applied to extracting structure feature of shaft orbit, which reflectd vibration state of rotor, to realize figure quantification for online recognition of FNN. Aiming at six typical vibration faults, including shaft orbit, four categories in all fourteen fault symptoms were summarized, their fuzzy attributes were analyzed and the corresponding fuzzifications were described. Then a sixlayer FNN was established to express fuzzy inference from symptom to fault, and its learning algorithm was provided to modify network parameter. By self-learning, FNN could guarantee a higher precision of the on-line diagnosis. The analytical results of cases verify the feasibility of the diagnosis system based on FNN.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049