对任意正整数n,设a(n)表示n的六边形数的补数部分,即a(n):n-m(2m-1),如果m(2m-1)≤n〈m+1)(2m+1),m∈N.主要研究a(n)的均值性质以及a(n)与除数函数.a(n)与欧拉函数的混合均值性质,并给出了三个有趣的渐近公式.
For any positive integer n, let a (n) denote the complement part of hexagon number of n. That is, a (n) =n-m(2m-1) , if m(2m- 1) ≤〈n〈 (m+1)(2m+1), meN. The mean value property of a(n), the hybrid mean value property of a (n) and the divisor function, and the hybrid mean value property of a (n) and the Euler function are studied. Three interesting asymptotic formulae about it are given.