目的研究Smarandache函数对费尔马数的下界估计问题。方法利用初等方法、组合方法以及原根的性质。结果证明了估计式S(Fn)≥12·2^n+1,其中n为任意大于3的整数。结论改进了WANG Jin-rui的相关结论,使Smarandache函数对费尔马数具有一个较强的下界估计。
Aim To study a lower bound estimate problem of the Smarandache function for Fermat numbers. Methods Using the elementary method, combinational method and the properties of the primitive roots. Results The estimate S(Fn) ≥12 · 2^n + 1, was proved,where n≥3 be any integer. Conclusion A new sharper lower bound estimate of the Smarandache function (for Fermat numbers) is given.