文章讨论了一个数论函数-平方根函数的算术平均值及几何平均值的极限问题,它与平方根函数值的分布密切相关;设n是正整数,a2(n)表示不小于n的最小平方根部分,b2(n)表示不超过n的最大平方根部分,即a2(n)=min{m|m≥n1/2,m∈N+},b2(n)=max{m|m≤n1/2,m∈N+}。定义数列S2(n)=[a2(1)+a2(2)+a2(3)+…+a2(n)]/n=1n∑i=n1a2(n),I2(n)=[b2(1)+b2(2)+b2(3)+…+b2(n)]/n=1/n∑i=n1b2(n)。研究了整数n的最小平方根a2(n)和最大平方根b2(n)部分数列的均值,采用初等及解析的方法,给出了两个有趣的渐近公式。在所得的定理1的基础上,研究了数列SI22/((nn)),KL/22((nn)),(S2(n)-I2(n)),(K2(n)-L2(n))的敛散性,给出了相关的极限式,推论1、推论2和推论3。
This article discusses a number of functions-square root function of the arithmetic mean and the geometric mean of the limits of the problem,which is the distribution with the square root function value is closely related.Let n be a positive integer,a2(n) be the smallest square root greater than or equal to n,and b2(n) be the largest square root less than or equal to n.Namely:a2(n)=min{m|m≥n12,m∈N+},b2(n)=max{m|m≤n12,m∈N+}.Then define the sequence: S2(n)=[a2(1)+a2(2)+a2(3)+…+a2(n)]/n=1n∑ni=1a2(n),I2(n)=[b2(1)+b2(2)+b2(3)+…+b2(n)]/n=1n∑ni=1b2(n),the smallest square root a2(n)and the largest square root b2(n) of integer n is studied.The elementary and analytic methods to study the mean value properties of these two sequences is used to,give two interesting mean value formulas for them.Based on theorem 1 obtained,then series S2(n)I2(n),K2(n)L2(n),(S2(n)-I2(n)),(K2(n)-L2(n)) are also studied: the convergence and divergence of lemma 1、 lemma 2 and lemma 3.