对任意正整数n,Smarandache函数V(n)定义为:V(1)=U(1):1;n〉1时,令n=p1^α1P2^α2…pr^ar是n的标准分解式,则V(n)=min{≤i≤r},α1·p1,α2·p2,…,αr·Pr};U(n)=max1≤i≤r{α1·P1,α2·P2,…,αr·Pr}.利用素数函数π(x)和Riemannzeta-函数ζ(s)的解析性质,通过分区间讨论的方法研究了两个Smarandache函数U(n)与V(n)的混合均值,并给出了它的一个渐近公式。
For any positive integer n, defineV(n)=min{≤i≤r},α1·p1,α2·p2,…,αr·Pr}and U(n)=max1≤i≤r{α1·P1,α2·P2,…,αr·Pr} if n 〉 1 , where α1P2^α2…pr^ar, Pr satisfy n=p1^α1P2^α2…pr^ar rwhich decomposes n into prime powers. Based on the analytic properties of the prime function π(x) and Riemann zetafunction ζ(s), the hybrid mean value involving two Smarandache functions is studied by using an interval halving method, and further an asymptotic formula is given.