对于任意的正整数n,我们用S(n)表示Smarandache函数,即S(n)=min{m:n|m!,m∈N},文章主要利用初等方法和解析方法,研究Smarandache函数∧(n)S(n)、∧2(n)S(n)的混合均值性质,获得了两个较强的渐近公式.
For any positive integer n, let S(n) denotes the Smarandache function, that S(n)=min{m:n|m!,m∈N}. In this paper, we use the elementary methods to study the mean value properties of the composite function ∧(n)S(n)、∧2(n)S(n) , and give two sharper asymptotic formula for it.