针对污水处理曝气池过程优化问题,通过PHAT-GCC语音定位模型计算并消除各参数对出口COD的时延估计,运用EXCEL、SPSS处理数据,建立BP神经网络预测模型,得出出口COD的预测结果,以35为出口COD限制浓度,筛选出预测出口COD大于35的数据,选择重要性超过0.05的参数变量作为调整指标,通过BP神经网络预测模型再次预测出口COD的值,确定各参数的调整区间.
In order to optimize the process of wastewater treatment aeration tank,the PHAT- GCC model is used to calculate and eliminate the time delay on output COD. Processing data by SPSS Inc and EXCEL,BP Neural Network model is used to get the prediction results of output COD. Filtering out the output COD greater than 35 and choosing the parameters of more importance than 0. 05 as the adjustment index,the output COD is predicted again. The adjustment range of parameters is determined by new output COD prediction.