Smarandache函数的相关性质是初等数论和解析数论研究的一个重要问题.本文利用初等方法给出了Smarandache Ceil函数Sk(n)与n的k次补数函数ak(n)之间的关系式(Sk(n))k=ak(n)·n,再利用解析方法给出了Sk(n)一个渐近公式∑n≤xSk(n)=ζ(2k-1)/2x2∏p(1-1/p2+p-1/p2k-1+p2k-2)+O(x3/2+ε).
The related properties of Smarandache function is an important aspect of elementary number theory and analytic number theory .By using the elementary methods ,an equation involving of Smaran‐dache function and complementary function is given ,namely (Sn(n))k= ak (n) · n .Then using the ana‐lytic method to get and asymptotic formula for the mean value of Sk (n) .