对任意正整数n及给定的正整数m 和k (k>1),定义了广义 Smarandache 幂和函数P(n,m,k)=Σ[(lnm+lnn)/lnk] i=0(n-ki )。利用初等方法和高斯函数的性质研究了P(n,m,k)的均值,得到了一个有趣的渐近公式。
Let n be any positive integer,for two fixed positive integer m and k(k>1 ),a generalized power-sum Smarandache functions P (n,m,k)is defined by P(n,m,k)= [(lnm+lnn)/lnk]Σ i=0 (n-ki).The mean value of P(n,m,k)is studied by using elementary methods and the properties of Gauss function,an inter-esting asymptotic formula is given.