设n是正奇数,Un=(αn+βn)/2,Vn=(αn-βn)/2 2~(1/2),其中α=1+2,β=1-2.运用Pell数的算术性质讨论了方程x2+Uyn=Vzn的正整数解(x,y,z),证明了当n≡±3(mod 8)时,该方程仅有正整数解(x,y,z)=(V2n-1,2,4).
Let n be a positive odd integer,and let Un=(αn+β n)/2,Vn=(αn-βn)/2 2~(1/2),where α=1+2~(1/2),β=1-2~(1/2).In this paper,using the arithmetic properties of Pell numbers,the positive integer solutions(x,y,z) of the equation x2+Uyn=Vzn are discussed,and prove that if n≡±3(mod 8),then the equation has only the positive integer solution(x,y,z)=(Vn2-1,2,4).