给出D.H.Lehmer问题的一个推广,由此生成一种新的伪随机二进制数列.设p为奇素数,k为正整数,对于1≤n≤p-1,定义en={1,2︱p{nk/p}+p{nk/p},-1,2︱p{nk/p}+p{nk/p},其中n表示n关于模p的逆,满足1≤n≤p-1,且nn≡1(mod p),E p-1=(e1,…,e p-1).利用指数和的估计证明了Ep-1是好的伪随机二进制数列.
A D.H.Lehmer problem is generalized so as to generate a new form of pseudorandom sequence.Let p be an odd prime.For 1≤n≤p-1,it is defined that en={1,2︱p{nk/p}+p{nk/p},-1,2︱p{nk/p}+p{nk/p}where is the multiplicative inverse of n modulo p such that 1≤n≤p-1 and nn≡1(mod p),and E p-1=(e1,…,e p-1).The author proves that(en) is a good pseudorandom sequence using the estimate for exponential sums.