设D=∏si=1pi(s≥2),pi≡1(mod 6)(1≤i≤s)为不同的奇素数.关于不定方程x3-1=Dy2的初等解法至今仍未解决.利用同余式、二次剩余、递归序列、Pell方程的解的性质,证明了q≡1,19(mod 24)为奇素数,(q/73)=-1时,不定方程x3-1=73qy2仅有整数解(x,y)=(1,0).
Let D=∏si=1pi(s≥2),pi≡1(mod 6)(1≤i≤s)be different odd primes.The primary solution of the indefinite equation x3-1=Dy2 still remains unresolved.By means of congruence,quadratic residue,recursive sequence and some properties of the solutions to Pell equation,we have proved that the indefinite equation x3-1=73qy2 only has integer solution(x,y)=(1,0)when be odd prime with q=1,19(mod 24) and (q/73)=-1.