设f(n)及g(n)是两个算术函数,它们的最小公倍数积(有时也称为R.D.yonSterneck—Lehmer积)是通过这两个函数定义的一个新的算术函数c(n)一∑f(r)g(s),其中[r,s]表示正整数r及s的最小公倍数.利用初等方法以及函数Ω(n)的性质,研究了当g(n)=f(n)=Ω(n)时,方程C(n)=n(n)的可解性,并给出该方程的所有正整数解.
Let f(n) and g(n) be two arithmetical functions. The L. C. M.-product (some times it is also called R. D. von Sterneck-Lehmer's product) of f(n) and g(n) is defined by C(n) = f(r)g(s), where [r,s] denotes the L. C. M. of positive integers r and s. The main purpose of this paper is using the elementary method and the properties of g2(n) to study the solvability of the equation C(n) =g23 (n) with g(n) =f(n)=[2(n),and give its all positive integer solutions.