设a,b是适合min(a,b)〉1,2|a,2+b以及v(6—1)是正奇数,其中v(b-1)表示整除b-1的2的最高次数.本文运用初等方法以及同余性质,研究了方程(a^m-1)(b^n-1)=x^2的可解性.对某些特殊素数P,证明了该方程无解.证明了如果存在适合P≡±E3(mod8)的奇素数P,可使a≡-1(modP)以及b≡0(modp),则方程(a^m-1)(b^n-1)=x^2无正整数解(x,m,n).
Let a, b be positive integers satisfying min(a, b) 〉 1, 2 | a, 2 + b and v(b - 1) is odd, where v(b - 1) denote the highest power of 2 dividing b - 1. The main purpose of this paper is using the elementary method and the properties of congruence to study the solvability of the equation (am - 1)(bn - 1) = x2. Proved that the equation has no positive integer solution for some special prime p. If there exist an odd prime p such that p ≡±3(mod 8), a = -1(mod p) and b ≡0(mod p), then the equation (am - 1)(bn - 1) =x2 has no positive integer solution (x, m, n).