设{bn}={1,21,213,4213,42135,642135,6421357,…}表示SLRNN数列,即bn是从1开始依次在左边和右边追加连续的自然数形成的正整数。利用初等方法及等比级数的性质,研究SLRNN数列的算术性质,并给出其对数均值的一个较强的渐近公式,得到了下面的结论:1.设{bn}表示SLRNN数列,对任意实数x〉1,有渐近公式:
Let { bn } = { 1,21,213,4 213,42 135,642 135,6 421 357,... } denote the SLRNN sequence. That is, bn is starting with 1 and append alternatively first on the left and on the right the natural numbers. By the elementa- ry method and the properties of the geometric progression to study the arithmetical properties of the SLRNN se- quence, and give a sharper asymptotic formula for the mean value of logarithm. It is shown that: 1. Let { bn t de- notes SLRNN sequence, for any real number x 〉 1, there is the asymptotic formula lnln(bn) = x. lnx + O(x) ;