设p是奇素数。运用初等数论方法证明了:方程x^2=2^2a+2p^2n-2^a+2p^n+r+1没有适合n≥r的正整数解(x,a,n,r)。上述结果部分地分解决了S.L.Ma有关Abel差集的一个猜想。
Let p be an odd prime.By using some elementary number theory methods,it is shown that the equation x^2=2^2a+2p^2n-2a+2^pn+r+1 has no positive integer solution(x,a,n,r) with n≥r.This result partly solves a S.L.Ma's conjecture on Abelian difference sets.