设G是一个简单图,f为G的一个E-全染色.对任意点x∈V(G),用C(x)表示在f下点x的色以及与x关联边颜色所构成的集合.若u,v∈V(G),u≠v,有C(u)≠C(v),则f称为图G的点可区别E-全染色,简称VDET染色.图G的VDET染色所用颜色数目的最小值称为图G的点可区别E-全色数(简称为VDET色数),记为χevt(G).利用分析法和反证法,讨论并给出完全二部图K3,n(3≤n≤17)的点可区别E-全色数.
Let Gbe a simple graph,fis a total coloring of G.For an E-total coloring fof a graph G and any vertex xof G,let C(x)denote the set of colors of vertex xand the edges incident with x,we call C(x)the color set of x.If C(u)≠C(v)for any two different vertices uand vof V(G),then fis a vertex-distinguishing E-total coloring of G or a VDET coloring of G for short.The minimum number of colors required for a VDET coloring of Gis denoted byχevt(G)and is called the VDET chromatic number of G.Based on the analytical method and proof by contradiction,the VDET coloring of complete bipartite graph K3,n was discussed and the VDET chromatic number of K3,n(3≤n≤17)was obtained.