对于图G=(V,E)的一个正常全染色,用C(v)表示顶点v∈V的颜色以及与v关联的边的颜色构成的集合,称之为点v∈V的色集合.如果C(u)≠C(v),那么就说u和v被该全染色所区别.一个图G的d-强全染色是指使得满足1≤dG(u,v)≤d的任意一对顶点u和v可区别的一个正常全染色.所谓一个图G的d-强全色数是指对图G进行d-强全染色所需要的颜色的数目的最小值.文中对当d∈[35,55]时圈的d-强全色数进行了确定.
For a proper total coloring of a graph G=(V,E),the palette C(v) of a vertex v ∈ V is the set of the colors of the edges incident with v and the color of the vertex itself.If C(u)≠C(v),then the two vertices u and v of G are said to be distinguished by the total coloring.A d-strong total coloring of G is a proper total coloring that distinguishes all pairs of vertices u and v with distance 1 ≤ dG(u,v) ≤d.The d-strong total chromatic numberχd(G) of G is the minimum number of colors of a d-strong total coloring of G.In this paper we determine χd(Cn) completely for cycles where d ∈[35,55]and d ∈ N.