这篇文章学习最佳的消费空闲,公事包和其偏爱被 -maxmin 提出的一个无穷地过的投资者的退休选择是区分歧义和歧义态度的期望的 CES 用途。采用递归的 multiplepriors 用途和向后的随机的微分方程(BSDE ) 的技术,我们转变 -maxmin 期望的 CES 用途进在与投资者无常的度有关的一项新概率措施下面的一个古典期望的 CES 实用程序。我们的模型调查最佳的 consumption-leisure-work 选择,最佳的公事包选择,和最佳的停止问题。在这个模型,投资者能与一种退休选择一起在某个最小的工作小时上面灵活地调整她劳动的供应。问题能是使用变化不平等解决的经分解。并且当她的财富超过某个批评水平时,最佳的退休时间作为第一次被给。在退休前后的最佳的消费空闲和公事包策略在关上的形式被提供。最后,在没有暧昧的从那些的歧义下面的最佳的消费空闲,公事包和批评财富水平的区别被讨论。
This article studies optimal consumption-leisure, portfolio and retirement selection of an infinitely lived investor whose preference is formulated by a-maxmin expected CES utility which is to differentiate ambiguity and ambiguity attitude. Adopting the recursive multiple- priors utility and the technique of backward stochastic differential equations (BSDEs), we transform the (~-maxmin expected CES utility into a classical expected CES utility under a new probability measure related to the degree of an investor's uncertainty. Our model investi- gates the optimal consumption-leisure-work selection, the optimal portfolio selection, and the optimal stopping problem. In this model, the investor is able to adjust her supply of labor flex- ibly above a certain minimum work-hour along with a retirement option. The problem can be analytically solved by using a variational inequality. And the optimal retirement time is given as the first time when her wealth exceeds a certain critical level. The optimal consumption-leisure and portfolio strategies before and after retirement are provided in closed forms. Finally, the distinctions of optimal consumption-leisure, portfolio and critical wealth level under ambiguity from those with no vagueness are discussed.