考察了泛函方程1/nf(x)+1/mf(y)+f(z)=f(x/n+y/m+z),∨x,y,z∈G 的Hyers-Ulam稳定性,其中m,n∈Z+,m,n≠1.改进了Rassias方法,并使用改进后的Rassias方法得到这个泛函方程的广义Hyers-Ulam稳定性.
Let G be a dividing group,the Hyers-Ulam stability of the following general functional equation 1/nf(x)+1/mf(y)+f(z)=f(x/n+y/m+z),∨x,y,z∈G m,n∈Z+,m,n≠1 is investigated and obtained by using the improved Rassias direct method.