设U=Tri(A,M,B)是三角代数,Jordan导子为三角代数中的一类重要映射.采用算子论的方法结合广义的Jensen等式证明了三角代数上与高阶导子系有关的函数方程具有广义的Hyers-Ulam-Rassias稳定性.从而提供了一种利用稳定性研究扰动问题的方法.
Let U=Tri(A,M,B) be a triangular algebra.In this paper,using operator theoretie method,it was proved the generalized Hyers-Ulam-Rassias stability of functional eduations related to derivations on a triangular algebra associated to a generalized Jensen equation.In addition,it is taked account of the problem of Jacobson radical ranges for such functional inequality.