引入并研究了Banach空间X中的p阶Bessel列、p阶框架、p阶独立框架、p阶紧框架与p阶Riesz基.证明了:X中全体p阶Bessel列构成一个Banach空间BpX,X中的任一序列f={fn}n∈Λ是p阶Bessel列当且仅当c>0使得{cn}∈lq有‖∑n∈Λcnfn‖≤c‖{cn}‖q,空间BpX与算子空间B(X*,lp)是等距线性同构的.应用算子论方法,证明了p阶Bessel列f={fn}n∈Λ是p阶框架当且仅当算子Tf是下有界的,它是独立的当且仅当算子Tf是可逆的,以及独立的p阶框架与p阶Riesz基是一致的.最后,证明了Banach空间X具有p阶Riesz基当且仅当存在X上与原有范数等价的范数‖.‖0,使得(X,‖.‖0)等距同构于lq.
Bessel sequences,frames,tight frames,independent frames and Riesz basis of order p for a Banach space X are introduced and discussed.It is proved that the set BpX Bessel sequences of order p in X is a Banach space;it is established that a sequence f = {fn}n∈Λ in X is a Bessel sequence of order p if and only if c>0 such that ‖∑n∈Λcnfn‖≤c‖{cn}‖q for all {cn}∈lq,where p-1+q-1=1;it is also proved that the spaces BpX and B(X*,lp) are linearly and isometrically isomorphic.In light of operator theory,it is shown ...