设素数p≡1(mod12),(p/13)=-1.关于丢番图方程x^3-1=13py^2的初等解法至今仍未解决.主要利用递归序列、同余式、平方剩余、Pell方程的解的性质,证明了丢番图方程x^3-1=13py^2仅有整数解(x,y)=(1,0).
Let pbe prime with p≡1(mod12)and (p/13) =-1.The primary solution of the Diophantine equation x^3-1=13py^2 still remains unresolved.Recurrent sequence,congruence,quadratic residue,some properties of the solutions to Pell equation are used to prove that the Diophantine equation x^3-1=13py^2 only has integer solution(x,y)=(1,0).