位置:成果数据库 > 期刊 > 期刊详情页
基于三聚类中心K-means算法的SAR船只检测方法
  • ISSN号:1000-1832
  • 期刊名称:《东北师大学报:自然科学版》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术] TP722.6[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]内蒙古师范大学地理科学学院,内蒙古呼和浩特010022, [2]东北师范大学环境学院,吉林长春130117, [3]北京化工大学理学院,北京100029
  • 相关基金:国家高技术研究发展“863”计划项目(2013AA122803); 海洋公益性行业科研专项经费项目(201505002-1); 国家海洋局海洋遥测工程技术研究中心创新青年基金资助项目(2012009)
中文摘要:

为解决高分辨合成孔径雷达(SAR)图像中基于海杂波模型的CFAR船只检测方法适用性受限的问题,提出了一种基于三聚类中心的K-means船只检测方法.该方法将SAR图像划分为船只目标、海杂波及其他干扰3个聚类,利用K-means聚类算法求得最高聚类中心值,并将其作为检测阈值进行船只初步检测,然后结合分辨率和船只尺度等先验信息进行形态学滤波操作得到最终检测结果.基于实测数据的实验结果表明,所提方法无须海杂波的统计信息,且不依赖于SAR图像的分辨率,可有效地服务于高分辨率SAR图像中的船只检测任务.

英文摘要:

Based on the three-centroid K-means clustering algorithm,this paper proposed a feasible ship detection method for the high resolution SAR imagery.The method proposed has nothing to do with the resolution of SAR imagery,and it needs no prior knowledge about the sea clutter.With the K-means algorithm,the method in this paper firstly divides the SAR data into three clusters,i.e.ship targets,sea clutter and other disturbance,then executes clustering operation to get the centroid of the three clusters,and set the maximum be the detection threshold to get the candidates,after then,a mathematic morphological filter is involved to obtain the final detection results.The experiment results based on 3-scene real RADARSAT-2data show that the proposed method could be a valuable one for ship detection in high resolution SAR imagery.

同期刊论文项目
期刊论文 134
同项目期刊论文
期刊信息
  • 《东北师大学报:自然科学版》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:东北师范大学
  • 主编:刘宝
  • 地址:长春市净月大街2555号
  • 邮编:130117
  • 邮箱:dslkxb@nenu.edu.cn
  • 电话:0431-89165992
  • 国际标准刊号:ISSN:1000-1832
  • 国内统一刊号:ISSN:22-1123/N
  • 邮发代号:12-43
  • 获奖情况:
  • 中文综合性科学技术类核心期刊,中国科学引文数据库来源期刊,中国科技论文统计源期刊,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,美国生物科学数据库,英国动物学记录,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:7830