采用空间分辨光发射谱和傅里叶变换功率阻抗分析仪研究了衬底偏压和辉光功率对微晶硅薄膜沉积过程中的等离子体光学与电学特性的影响.研究表明:在交流偏压(AC)、悬浮(floating)、负直流加交流(-DC+AC)偏压下,Hα发射强度空间分布规律相似,平均鞘层长度相等;正直流加交流(+DC+AC)偏压和接地(grounded)时Hα发射强度显著增强,并存在双峰(doublelayers)现象.增大功率,Hα发射强度也随着增大,并在17W与22W之间产生跳变.电学测试发现功率增大,等离子体电阻降低,电抗降低,电容性增强.并对此进行了分析.
Optical emission spectroscopy and Fourier transform power and impedance analysis have been used to investigate the effects of substrate bias and glow discharge on the plasma optical and electrical properties for the deposition of microcrystalline silicon. Results show that the Ha emission intensity distribution has the same tendency under bias AC, floating and - DC + AC, and their mean sheath lengths are almost located at the same position of the electrode gap. Compared to the above three bias states, Ha emission intensity increases sharply and double layers appear under + DC + AC bias and grounded conditions. Increasing of glow discharge power leads to the rise of Ha emission intensity, both the resistance and reactance decrease, and the plasma becomes more capacitive.