在信息技术快速发展的今天,数据形式的多样性使得对问题和现象的研究不再局限于单纯利用截面数据或时间序列数据进行分析。文章所研究的是一种由截面数据和时间序列数据共同组成的具有立体数据结构的三维立体数据的分类问题,以定义的常数型均值以及动态非相似度为基础对其进行聚类分析。同时,以中国现代服务业的实际数据进行相应的实例验证。结果证明,该种方法能有效的从规模和趋势上对三维立体数据进行分类。
Along with the rapid development of information and technology,the diversity and numerousness of data forms have become a common problem confronted by data collectors and researchers.The various researches not only analyzed and discussed problems by using the three-way data,but also in multi-angles and multi-dimensions.The analysis object of this paper is the classification of three-way data,which is three-dimensional data composed of cross-sectional data and time series data.The paper tries to do clustering analysis based on constant mean and dynamic dissimilarity,and uses modern service industry data of our country to make an empirical analysis.