在实际系统分析及建模中,人们往往需要保留一些特别重要的分析变量。本文改进了基于主基底的变量筛选方法,分两个阶段来筛选系统分析所需变量。用重要变量构建初始主基底超平面,作为筛选其他普通变量的起点。该方法既结合了人们的定性分析经验,又保留了基于主基底分析的变量筛选方法能够自动筛选系统分析所需最简变量集合的特点,达到了数据降维目的。实际案例分析验证了该方法的有效性。
In practical system analysis and modeling, analysts always need to retain certain important indispensable variables. This paper proposed an improved variable selection method based on Principal Analysis, which selected variables by two stages. The indispensable variables were used to construct the initial Principal Basis hyperplane to select the general variables. This method referred to the qualitative analysis experiences and could also automatically select the simplest variable set to reduce the data dimension for system analysis as the original method. Practical case validated the effectiveness of this improved method.