位置:成果数据库 > 期刊 > 期刊详情页
Soft Fault Diagnosis for Analog Circuits Based on Slope Fault Feature and BP Neural Networks
  • ISSN号:1007-0214
  • 期刊名称:Tsinghua Science and Technology
  • 时间:0
  • 页码:26-31
  • 语言:英文
  • 分类:TP183[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程] TN710[电子电信—电路与系统]
  • 作者机构:Department of Automation Tsinghua University, Department of Automation, Tsinghua University, Beijing 100084, China
  • 相关基金:the National Basic Research and Development (973) Program of China (No.2005cb321604);the National Natural Science Foundation of China (No. 60633060)
  • 相关项目:非线性模拟电路软故障诊断字典法的研究
中文摘要:

Fault diagnosis is very important for development and maintenance of safe and reliable electronic circuits and systems. This paper describes an approach of soft fault diagnosis for analog circuits based on slope fault feature and back propagation neural networks (BPNN). The reported approach uses the voltage relation function between two nodes as fault features; and for linear analog circuits, the voltage relation function is a linear function, thus the slope is invariant as fault feature. Therefore, a unified fault feature for both hard fault (open or short fault) and soft fault (parametric fault) is extracted. Unlike other NN-based diagnosis methods which utilize node voltages or frequency response as fault features, the reported BPNN is trained by the extracted feature vectors, the slope features are calculated by just simulating once for each component, and the trained BPNN can achieve all the soft faults diagnosis of the component. Experiments show that our approach is promising.

同期刊论文项目
期刊论文 158 会议论文 59 著作 2
期刊论文 24 会议论文 2 获奖 4
同项目期刊论文
期刊信息
  • 《清华大学学报:自然科学英文版》
  • 主管单位:教育部
  • 主办单位:清华大学
  • 主编:孙家广
  • 地址:北京市海淀区清华园
  • 邮编:100084
  • 邮箱:journal@tsinghua.edu.cn
  • 电话:010-62788108 62792994
  • 国际标准刊号:ISSN:1007-0214
  • 国内统一刊号:ISSN:11-3745/N
  • 邮发代号:82-627
  • 获奖情况:
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘
  • 被引量:323