复杂半导体材料结构中的载流子分布特性对器件性能有重要影响.本文针对一种新型的波长上转换红外探测器,研究了载流子阻挡结构对载流子分布和器件特性的影响.论文通过自洽求解薛定谔方程、泊松方程、电流连续性方程和载流子速率方程分析了不同器件结构中的空穴分布.同时,生长了相应结构的外延材料,并通过电致荧光谱分析了载流子阻挡结构对器件特性的影响.结果表明,2 nm厚的AlAs势垒层既能有效阻挡空穴又不影响电子输运,有利于制作波长上转换红外探测器.此外,论文分析了阻挡势垒层的厚度和高度以及工作温度对载流子分布的影响.本文研究结果亦可应用于其他载流子非均匀分布的半导体器件.
Infrared (IR) photodetectors have been widely used in the fields of both civil and military applications such as environmental monitoring, medical diagnostics, satellite remote sensing and missile guidance, etc. In conventional large scale focal plane array (FPA) IR imaging, the thermal mismatch between IR photodetectors and silicon readout circuits will inevitably lead to the degradation of the device performance. An up-conversion IR photodetector, which converts IR photons to short-wavelength photons for Si-CCD-based imaging, can avoid thermal mismatch caused by hybridization with silicon readout circuits, resulting in a low-cost way for large array IR imaging. The operation principle of the semiconductor up-conversion IR photodetector is based on electron transitions and carrier transportation in different functional sections including absorption section, transportation section and emission section, hence the carrier distribution in the device structure has a crucial influence on the device performance. In order to achieve low dark current, carriers are expected to be non-uniformly distributed in the up-conversion device structure. Designing and optimizing the carrier-blocking structure are usually the key issues to acquire inhomogeneous carrier distribution. In this paper, up-conversion infrared photodetectors with various hole-blocking structures are investigated both the-oretically and experimentally. Firstly the carrier distributions are calculated by self-consistently solving the Schrodinger equation, Poisson equation, current continuity equation and carrier rate equation. Then the influence of the carrier-blocking structure on the device performance is analyzed by electroluminescence measurements on the corresponding epitaxial structures. According to the theoretical and experimental results, it is found that a 2-nm-thick AlAs barrier layer can block holes effectively without hampering the electron transportation, which is necessary for the up-conversion infrared photodetectors. However, other at