位置:成果数据库 > 期刊 > 期刊详情页
基于混合粒子群算法的梯级水电站多目标优化调度
  • ISSN号:0559-9350
  • 期刊名称:《水利学报》
  • 时间:0
  • 分类:TV697.1[水利工程—水利水电工程]
  • 作者机构:[1]华中科技大学水电与数字化工程学院,湖北武汉430074, [2]三峡水利枢纽梯级调度通信中心,湖北宜昌443133
  • 相关基金:科技部水利部公益性行业科研专项(200701008); 国家重点基础研究发展计划(973)课题(2007CB714107); 国家科技支撑计划课题(2008BAB29B05-06); 国家自然科学基金重点项目(50539140)
中文摘要:

提出多目标混合粒子群算法以求解梯级水电站多目标联合优化调度模型。该算法采用混合蛙跳算法的分组-混合循化优化框架以增强算法的全局搜索能力;在族群内通过粒子群算法的飞行调整策略指导个体进化;同时,引入外部精英集,建立了基于自适应小生境的外部精英集维护策略,提高了算法的收敛性和非劣解集的多样性。最后将该算法应用于三峡梯级水电站多目标优化调度工程,计算结果表明,本文算法能够获得计算实时性强、分布均匀、收敛性好的调度方案集,并以此分析明确了调度目标间的耦合关系,可为梯级电站的多目标调度决策提供科学依据。

英文摘要:

To solve the multi-objective optimal dispatch problem of cascade hydropower stations,a novel multi-objective shuffled particle swarm optimization algorithm (MOSPSO) is presented.MOSPSO uses the partition and shuffling process of shuffled frog leaping algorithm as basic algorithm framework to get rid of local optimal.The individual in memeplexes evolves with the flying strategy of PSO.An archive maintenance strategy with self-adaptive niche calculation method is established to improve the convergence and diversity of solutions.The proposed algorithm is applied to mid-long term optimal dispatch of the Three Gorges cascade hydropower stations.The results show that the algorithm can generate schemes with good convergence and diversity to guide practical dispatch.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《水利学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国水利学会 中国大坝工程学会
  • 主编:程晓陶
  • 地址:北京市复兴路甲1号中国水科院A座1117室
  • 邮编:100038
  • 邮箱:slxb@iwhr.com
  • 电话:010-68786221
  • 国际标准刊号:ISSN:0559-9350
  • 国内统一刊号:ISSN:11-1882/TV
  • 邮发代号:2-183
  • 获奖情况:
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:43715