目的 将Lyapunov定理推广到希尔伯特空间上的有界线性算子对上。方法 利用在适当希尔伯特空间分解下有界线性算子的矩阵表示。结果 给出算子对正稳定化的充要条件及一类算子不等式的谱描述。结论 Lyapunov定理推广到希尔伯特空间上的有界线性算子对上是成立的。
Aim In order to generalize the Lyapunov theorem to the bounded linear operator pairs on Hilbert space. Methods Using the matrix formula of operator under special space decomposition. Results The equivalent statements for the positive stability of operator pairs are obtained, and the spectral description of some certain operator inequality is taken. Conclusion The generalization of Lyapunov theorem holds and becomes a useful tool in giving the equivalent statements of the positive stability of operator pairs